QUANTUM-Seminar

Programm für das Wintersemester 2025/2026

Thursdays, 14 Uhr c.t.

Institut für Physik
IPH Lorentzraum 05-127

02.10.25Prof. Dr. Eugene Polzik, Niels Bohr Institute, Copenhagen, Denmark
Studies of extreme cases within quantum mechanics have always been particularly attractive. How macroscopic can objects be and still demonstrate unique quantum features, such as entanglement? What are the real limits of measurement precision in quantum mechanics? I will review our experiments where macroscopic objects are driven deep into the quantum regime. Observation of a quantum trajectory in a quantum reference frame with, in principle, unlimited accuracy will be presented. A concept of a reference frame with an effective negative mass required for such observation will be introduced. Sensing of magnetic fields and of mechanical motion beyond standard quantum limits of sensitivity using this concept will be presented. Application of those ideas to gravitational wave detection, continuous variable quantum repeaters and e.-m. field sensing will be reported. References Hybrid quantum network for sensing in the acoustic frequency range. Novikov et al. Nature 643, 955 (2025). Entanglement between Distant Macroscopic Mechanical and Spin Systems. Thomas et al. Nature Physics 17, 228–233(2021). Overcoming the Standard Quantum Limit in Gravitational Wave Detectors Using Spin Systems with a Negative Effective Mass. Khalili and Polzik, Phys. Rev. Lett. 121, 031101 (2018).
14:15 Uhr s.t., IPH Lorentzraum 05-127

zukünftige Termine
06.11.25Prof. Dr. Michael Fleischhauer, RPTU Kaiserslautern-Landau
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

13.11.25Prof. Dr. Frédéric Merkt, ETH Zürich
High-resolution spectroscopic measurements in few-electron atoms and molecules are increasingly used as a means to test the foundations of the theory of atomic and molecular structure. Modern first-principles calculations of the energy-level structure of few-electron atomic and molecular systems consider all known interactions [1-4]. Systematic comparisons of the results of such calculations with precise spectroscopic measurements in simple atoms and molecules such as H, He, H2+, H2 and He2+ aim at searching for effects not yet included in the theory (see, e.g., Refs. [5,6]) and at reducing the uncertainties of physical constants, (see e.g., Refs. [7,8]). This talk will present precision spectroscopic measurements of transitions to high Rydberg states of H, He, and H2, which we use to determine accurate values of their ionization energies and, in the case of H2, also of the spin-rovibrational energy-level structure of H2+. The talk will describe our experimental strategy to overcome limitations in the precision and accuracy of the measurements originating from the Doppler effect, the Stark effect, and the laser-frequency calibration. The experimental results will then be compared with the results of first-principles calculations that include the treatment of finite-nuclear-size effects and relativistic and quantum-electrodynamics corrections up to high order in the fine-structure constant. Recent aspects of these investigations include a new determination of the Rydberg constant [9] as a contribution to the resolution of the proton-size puzzle [10], a new method to record Doppler-free single-photon excitation spectra in the visible and the UV spectral ranges [11], a “zero-quantum-defect” method to determine the energy-level structure of homonuclear diatomic molecular ions such as H2+ [12], and a 9 discrepancy between theory and experiment in the ionization energies of metastable (1s2s 3S1) 4He [13] and 3He [14]. [1] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 93, 025010 (2021) [2] V. Korobov, L. Hilico and J.-Ph. Karr, Phys. Rev. Lett. 118, 233001 (2017) [3] V. Patkos, V. A. Yerokhin, and K. Pachucki, Phys. Rev. A 103, 042809 (2021) [4] M. Puchalski, J. Komasa, P. Czachorowski, and K. Pachucki, Phys. Rev. Lett. 122, 103003 (2019) [5] C. Delaunay et al., Phys. Rev. Lett. 130, 121801 (2023) [6] M. Germann et al., Phys. Rev. Res. 3, L022028 (2021) [7] A. Grinin et al., Science 370(6520), 1061-1066 (2020) [8] S. Schiller, J.-Ph. Karr, Phys. Rev. A 109, 042825 (2024) [9] S. Scheidegger, and F. Merkt, Phys. Rev. Lett. 132, 113001 (2024) [10] R. Pohl et al., Nature (London) 466, 213 (2010); A. Antognini et al., Science 339(6118), 417 (2013) [11] G. Clausen, S. Scheidegger, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 131, 103001 (2023) [12] I. Doran, N. Hölsch, M. Beyer, and F. Merkt, Phys. Rev. Lett. 132, 073001 (2024) [13] G. Clausen, K. Gamlin, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 111, 012817 (2025) [14] G. Clausen and F. Merkt, Phys. Rev. Lett. 134, 223001 (2025)
14:15 Uhr s.t., IPH Lorentzraum 05-127

20.11.25Prof. Dr.-Ing. Roland Nagy, FAU Erlangen-Nürnberg
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

27.11.25Prof. Dr. Skyler Degenkolb, Universität Heidelberg LEPP
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

04.12.25Dr. Michael Doser, CERN, Genf, Switzerland
The seminar will provide a glimpse of some elements of the rapidly evolving field of quantum sensing, with a particular focus on applications in particle physics. Specific approaches involving quantum systems, such as low-dimensional systems or manipulations of ensembles of quantum systems, hold great promise for improving high-energy particle physics detectors, particularly in areas like calorimetry, tracking, and timing. The use of quantum sensors for high-precision measurements, such as precision spectroscopy of novel atomic, molecular or ionic systems, as well as the development of new quantum sensors based on superconducting circuits, ion and particle traps, crystals, and nanomaterials, are equally relevant for low energy measurements that rely on high energy physics infrastructures. Significant advances and improvements in existing or future quantum technologies will be necessary to address such topics related to the dark universe, the detection of relic neutrinos, precision tests of symmetries and of the standard model and probing general foundational issues in physics. The seminar will thus also feature discussions of the Quantum Sensing Initiatives at CERN and the ECFA R&D Roadmap on Quantum Sensing and Advanced Technologies and will discuss options for future collaborations in the context of the recently approved DRD5 implementation of the roadmap.
14:15 Uhr s.t., IPH Lorentzraum 05-127

11.12.25Prof. Dr. Hubert Krenner, Universität Münster
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

18.12.25Prof. Dr. Christof Weitenberg, TU Dortmund
A Phase Microscope for Quantum Gases
14:15 Uhr s.t., IPH Lorentzraum 05-127

08.01.26Prof. Dr. Paolo Crivelli, ETH
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

15.01.26Dr. techn. Niels Geerits, TU Wien
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

22.01.26PD Dr. Sven Herrmann, Universität Bremen ZARM
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

29.01.26Prof. Dr. Jürgen Eschner, Universität des Saarlandes
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

05.02.26Prof. Dr. Jakob Reichel, Ecole Normale Supérieure de Paris, Département de Physique
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

12.02.26Jun.-Prof. Dr. Hayen Leendert, Laboratoire de Physique Corpusculaire de Caen, France
TBA
14:15 Uhr s.t., IPH Lorentzraum 05-127

Koordination: Kontakt:

Prof. Dr. Patrick Windpassinger
Institut für Physik
windpass@uni-mainz.de

Dr. rer. nat. André Wenzlawski
Institut für Physik
awenzlaw@uni-mainz.de

Andrea Graham
Institut für Physik
graham@uni-mainz.de